每天都和时间序列打交道,我总结了这篇文章!-每日热门

时间:2023-06-20 15:50:45来源:程序员客栈

Datawhale干货 

作者:戳戳龍,上海交通大学,量化算法工程师

前言

?  平时工作中每天都在和时间序列打交道,对时间序列分析进行研究是有必要的


(相关资料图)

?  分享和交流一些自己的在时序处理方面的心得,提供一些思路

?  介绍时序的发展情况,以及目前业界常用的方法

?  代码希望能模板化,能直接复制过去使用

时序方法发展
时间序列特征

?series = trend + seasons + dependence+ error

趋势

? 时间序列的趋势分量表示该序列均值的持续的、长期的变化

Df["ma20"] = Df["amt"].rolling(20).mean()

周期性(季节性)季节时序图

def plot_season(Df):    df = Df.copy()    # 计算每周属于哪一年    df["year"] = df["date"].dt.year    # 计算每周为一年当中的第几周    df["week_of_year"] = df["date"].dt.weekofyear    for year in df["year"].unique():        tmp_df = df[df["year"] == year]        plt.plot(tmp_df["week_of_year"], tmp_df["amt"], ".-", label=str(year))    plt.legend()    plt.show()

周期判断

?如果每隔h个单位,ACF值有一个局部高峰,则数据存在以h为单位的周期性

from  statsmodels.graphics.tsaplots import plot_acfplot_acf(Df["amt"], lags=500).show()

自相关性自相关

?自相关函数 autocorrelation function有序的随机变量序列与其自身相比较自相关函数反映了同一序列在不同时序的取值之间的相关性

from statsmodels.graphics.tsaplots import plot_acf_ = plot_acf(Df["amt"], lags=50)

偏自相关

from statsmodels.graphics.tsaplots import plot_pacfplot_pacf(Df["amt"], lags=5)

残差外部变量残差Prophet

?官方文档:https://facebook.github.io/prophet/docs/quick_start.html#python-api

原理模型结构

?模型结构——关于时间的广义线性模型

g(t):trend,用分段线性函数或逻辑增长曲线(logistic)拟合s(t):seasonality,用傅里叶级数拟合。可以叠加多个季节性,如weekly,yearly (s = s1+s2……)h(t):regressor,用线性函数拟合。可以叠加多个外部变量,如节假日、温度、活动(h = h1+h2+……):模型残差 不用拟合以上方程也可以写成乘法形式:乘法形式和加法形式可以相互转换,乘法形式两边取对数就是加法形式
趋势分段线性函数

?线性趋势函数

分段线性趋势函数

超参数,由用户给出分几段参数,根据历史数据拟合k:曲线增长速率m:曲线的截距
逻辑增长曲线

?函数展示:https://www.desmos.com/calculator/8pnqou9ojy?lang=zh-CN

超参数C:渐近线一共分几段参数k:曲线增长速率m:拐点对应时间周期性

?任何周期性函数都可以表示成傅里叶级数

超参数:由用户给定线参数:由历史数据拟合

? 函数展示:(https://www.desmos.com/calculator/5prck2beq1?lang=zh-CN

外部因素

: 模型输入, 外部因素在时刻的取值

Z可以是0-1变量 (e.g.是否是法定假日,是否是春节,是否有促销)

也可以是连续变量 (e.g.产品价格, 温度,降雨量)

:线性回归系数

算法流程

1️⃣ 先设定表达式(超参数)

2️⃣ 根据训练集数据求解参数

实践发电耗煤预测

df_train = Df[ (Df["date"]<"2022-01-01") & (Df["date"]>="2018-01-01") ]df_test =  Df[ (Df["date"]>="2022-01-01")]

def FB(data):    df = pd.DataFrame({    "ds": data.date,    "y": data.amt,    })#     df["cap"] = data.amt.values.max()#     df["floor"] = data.amt.values.min()    m = prophet.Prophet(        changepoint_prior_scale=0.05,         daily_seasonality=False,        yearly_seasonality=True, #年周期性        weekly_seasonality=True, #周周期性#         growth="logistic",    )    m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性    m.add_country_holidays(country_name="CN")#中国所有的节假日        m.fit(df)    future = m.make_future_dataframe(periods=30, freq="D")#预测时长#     future["cap"] = data.amt.values.max()#     future["floor"] = data.amt.values.min()    forecast = m.predict(future)    fig = m.plot_components(forecast)    fig1 = m.plot(forecast)    a = add_changepoints_to_plot(fig1.gca(), m, forecast)    return forecast,m

forecast,m = FB(df_train)

def FPPredict(data,m):    df = pd.DataFrame({    "ds": data.date,    "y": data.amt,    })    df_predict = m.predict(df)    df["yhat"] = df_predict["yhat"].values    df = df.set_index("ds")    df.plot()    return df

df = FPPredict(df_test.tail(200),m)

申购赎回金额预测

kaggle notebook[1]

Purchase Redemption Data.zip

import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport prophetfrom prophet.diagnostics import cross_validationfrom prophet.diagnostics import performance_metricsfrom prophet.plot import plot_cross_validation_metricimport warningswarnings.filterwarnings("ignore")

data_user = pd.read_csv("../input/purchase-redemption/Purchase Redemption Data/user_balance_table.csv")data_user["report_date"] = pd.to_datetime(data_user["report_date"], format="%Y%m%d")data_user.head()

data_user_byday = data_user.groupby(["report_date"])["total_purchase_amt","total_redeem_amt"].sum().sort_values(["report_date"]).reset_index()data_user_byday.head()

申购

#定义模型def FB(data: pd.DataFrame):    df = pd.DataFrame({    "ds": data.report_date,    "y": data.total_purchase_amt,    })#     df["cap"] = data.total_purchase_amt.values.max()#     df["floor"] = data.total_purchase_amt.values.min()    m = prophet.Prophet(        changepoint_prior_scale=0.05,         daily_seasonality=False,        yearly_seasonality=True, #年周期性        weekly_seasonality=True, #周周期性#         growth="logistic",    )#     m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性    m.add_country_holidays(country_name="CN")#中国所有的节假日        m.fit(df)    future = m.make_future_dataframe(periods=30, freq="D")#预测时长#     future["cap"] = data.total_purchase_amt.values.max()#     future["floor"] = data.total_purchase_amt.values.min()    forecast = m.predict(future)    fig = m.plot_components(forecast)    fig1 = m.plot(forecast)    return forecast,m

result_purchase,purchase_model = FB(data_user_byday.iloc[:-30])

def FPPredict(data,m):    df = pd.DataFrame({    "ds": data.report_date,    "y": data.total_purchase_amt,    })#     df["cap"] = data.total_purchase_amt.values.max()#     df["floor"] = data.total_purchase_amt.values.min()    df_predict = m.predict(df)    df["yhat"] = df_predict["yhat"].values    df = df.set_index("ds")    df.plot()    return df

purchase_df = FPPredict(data_user_byday.iloc[-30:],purchase_model)

赎回

#定义模型def FB(data: pd.DataFrame):    df = pd.DataFrame({    "ds": data.report_date,    "y": data.total_redeem_amt,    })    df["cap"] = data.total_purchase_amt.values.max()    df["floor"] = data.total_purchase_amt.values.min()    m = prophet.Prophet(        changepoint_prior_scale=0.05,         daily_seasonality=False,        yearly_seasonality=True, #年周期性        weekly_seasonality=True, #周周期性        growth="logistic",    )#     m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性    m.add_country_holidays(country_name="CN")#中国所有的节假日        m.fit(df)    future = m.make_future_dataframe(periods=30, freq="D")#预测时长    future["cap"] = data.total_purchase_amt.values.max()    future["floor"] = data.total_purchase_amt.values.min()    forecast = m.predict(future)    fig = m.plot_components(forecast)    fig1 = m.plot(forecast)    return forecast

result_redeem = FB(data_user_byday)

Bonus 时间序列特征工程

https://www.heywhale.com/mw/project/63904f5658e3bea6a3e52800

EDA

import sweetviz as svdef eda(df, name, target=None):    sweet_report = sv.analyze(df, target_feat=target)    sweet_report.show_html(f"{name}.html")def eda_compare(df1, df2, name, feature, target):    feature_config = sv.FeatureConfig(force_text=feature, force_cat=feature)    sweet_report = sv.compare(df1, df2, feat_cfg=feature_config, target_feat=target)    sweet_report.show_html(f"{name}_compare.html")

完整版请访问:https://www.wolai.com/stupidccl/5dqha79nnrPMf5xTAs6jUu

参考资料[1]

kaggle notebook: https://www.kaggle.com/code/stupidccl/time-serious-analysis-1/edit/run/107631286

干货学习,点赞三连↓

关键词:

相关资讯
热门频道